THE NMR SPECTRA OF FUTOENONE AND DERIVATIVES:

PARTIAL DECOUPLING AS AN AID IN THE ASSIGNMENT OF COMPLEX

SPECTRA, AND FURTHER OBSERVATIONS OF OVERHAUSER EFFECTS

M. C. Woods* and I. Miura

(Department of Chemistry, Tohoku University, Sendai, Japan) **A.** Ogiso, M. Kurabayashi and H, Mishima

(Central Research Laboratories, Sankyo Co. Ltd., Tokyo) (Received in Japan 30 November 1967)

Derivation of the structure of futoenone (I) , reported in the preceding paper¹, is based largely on a complete and unambiguous assignment of the NMR spectrum of futoenone. As can be seen from Fig. 1, the six-proton group of signals appearing in the 1.0 to 3. 0 ppm region of the 100 MC spectrum is too complicated to be assigned by inspection, although the multiplicities of at least three proton–signals (H_{7a}, H_{9a}, H_{10β}) can be deduced from a comparison of the spectra run in different solvents [cf. Figs. $l(a)$, $l(e)$, and $l(g)$].

Strong irradiation of the secondary-methyl signal at 0.50 ppm (85% $C_{f}D_{f}$ -CDCl₃ solution) converts the 11a-proton signal into a doublet with 11. 2 cps splitting [see Fig. 1(c)]; while complete decoupling of H_{8a} (a broad doublet of doublets at 4.67 ppm) causes two of the multiplets near 2 ppm (H_{7 β} and H_{9 β}) to become what appears to be a doublet of doublets (H_{7 β}), with split tings of 1.7 and 11.5 cps, and a doublet of doublets of doublets (H_{9β}), with splittings of 14, 5 and 1.7 cps, respectively, and, in addition, sharpens the broad doublet of doublets $(H_{g_{\alpha}})$ near 1.4 ppm [see Figs. l(b) and I(e)].

From these decoupling experiments, it is now possible to deduce by a first-order analysis the multiplicities of all proton signals in the 1. O-3.0 ppm region. However, because five proton-signals $(H_{7a}$, $H_{7\beta}$, H_{9a} , $H_{10\beta}$, H_{11a}) share a common splitting of ca 11. 5 cps, it is not possible at this stage to make an unambiguous assignment of the couplings.

Adverse δ/J ratios make it difficult if not impossible to completely decouple, one from

^{*} From Varian Associates, presently stationed at Tohoku University.

another, any of the protons appearing in the 1. O-3. 0 ppm region, but do not prevent the use of partial decoupling or spin-perturbation² to determine which proton is coupled to which. For

example, if one or more of the lines in the multiplet due to $\rm {H_{10\beta}}$ (see structure I) were to be irradiated, the signals due to $\rm H_{9a'}$, $\rm H_{9\beta'}$ and $\rm H_{11a}$ would be expected to show some sort of per turbation $^{\text{-}}$, whereas those due to $\text{H}_{7 \text{a}}$ and $\text{H}_{7 \text{a}}$ should remain unchanged. $\;$ That this is in fact what happens can be seen from Fig. I(f). Similarly, irradiation of the $9a$ -proton signal [see Fig. 1(d)] causes perturbation of the signals from $H_{9\beta}$ and $H_{10\beta}$ but does not affect the $H_{7a'}$, $H_{7\beta'}$ or H_{110} -signals.

In order to confirm the above findings, a similar analysis **was** made of the 100 MC spectrum of the lactone XII (see Fig. 2). The results of completely decoupling H_{8a} [Fig. 2 (d)] or the 11-Me [Fig. 2(b)], and of partially decoupling H_{q_0} [Figs. 2(h) and 2(f)] or H_{108} [Fig. 2(i)], are completely analogous to those obtained in the case of futoenone.

Long-range couplings and Overhauser Effects: The structure of the benzo-dihydrofuran moiety in the diacetate (IV) was established by the presence of the following small couplings: $J_{5,7a}$ = J_5 , $7b$ ^{=0. 8, J_2 , $7a$ ^{= J_2}, $7b$ ^{=ca 0. 1, J_5 , OMe ^{=ca 0. 2 cps. The decoupling experiments which}}} provided the magnitudes of these couplings are indicated in Figs. 3 and 4,

 H_5 in futoenone also shows a long-range coupling to the methoxyl protons and, in common with the signals from many other ethylenic protons in the grouping $-CH=C(OMe)$ - 3 , exhibits an Overhauser effect⁴ when the methoxyl signal is irradiated (Fig. 5).

The spectrum of futoenone also shows evidence of a small coupling (ca 0.5 cps) between $H₂$ and H_{7n} . Irradiation of the 7a-H signal causes the H_2 singlet to sharpen appreciably [see Figs. 6(a) and 6(b); decrease in half-band width = 0.45 cps], and irradiation of H_2 causes a similar sharpening of the H_{7c} signal. Since integration of the H₂- signal, both before and during irradiation of H_{7c} , shows no significant area increase [Fig. 6(c)], these protons are not

FIG. 2. 100 Mc spectra of the lactone XII.

-
-
-
- (a) normal $(CDCl₃)$ (e) normal $(CDCl₃)$
- (b) complete decoupling of $11-Me$ (f) partial decoupling of $9a-H$
- (c) normal (30% C_6D_6 -CDCl₃) (g) normal (C_6D_6)
- (d) complete decoupling of $8a-H$ (h) partial decoupling of $10\beta-H$
-
-
- -

involved in an Overhauser effect $^{\boldsymbol{4)}$. As can be seen from a comparison of Fig. 6(d) with Figs 6(a) and 6(b), $J_{2,7a}$ (ca 0.5 cps) is significantly larger than $J_{2,7\beta}$ (ca 0.1 cps), which indicate that this five-bond coupling is stereospecific.

As noted earlier 1 , $H_{7\beta}$ and $H_{9\beta}$ show typical W-type coupling across four bonds 5 .

When the H₁₄ and H₁₈ protons in futoenone or the lactone XII are irradiated, the signals due to $H_{11a'}$, H_{9a} and H_{10B} show small (ca 10%) increases in height, whereas H_{9B} appears to be unaffected; H_{10R} also shows some reduction in half-band width due to the removal of a small benzylic coupling⁵⁾. Irradiation of H₁₀₈, in futoenone or the lactone XII, affects H₁₈ (ca 0.2– 0.3 cps reduction in half-band width; ca 7% increase in signal area) more than H_{14} (ca 0.1 cps reduction in half-band width; ca 7% increase in signal area). On the other hand, irradiation of $H_{11\alpha}$ produces a greater effect on H₁₄ (ca 17% increase in signal height) than on H₁₈ (ca 9% increase), whereas irradiation of the $\mathtt{H_{96}}$ or $\mathtt{H_{9\beta}}$ signals causes small (ca 5%) increases in the heights of both the H₁₄ and H₁₈ signals. Although these effects are small, they are significant since irradiation of H_{9a}, H₉₆, H₁₀₆ or H_{11a} produces no detectable effect in the H₁₇ signal which was used as a check on instrument stability during these measurements.

REFERENCES

- 1) preceding paper: Tetrahedron Letters.
- 2) R. Freeman and W. A. Anderson $[J, Chem, Phys. 37, 2053 (1962)]$ have discussed the use of weak perturbing fields (* spin tickling") in nuclear magnetic double resonance experiments. The strength of the perturbing field used in the partial-decoupling described herein is intermediate between that used for $"\text{spin-tickling}"$ and the power required for complete decoupling. Spectra were measured on a Varian HA- 100 spectrometer utilizing frequency sweep and field-frequency stabilization
- 3) The couplings and Overhauser effects which are exhibited by protons in the grouping -CH=C(OMe)- will be discussed elsewhere.
- 4) F. A. L. Anet and A. J. R. Bourn, <u>J. Am. Chem. Soc</u>., 87, 5250 (1965); M. C. Woods, I. Miura Y. Nakadaira, A. Terahara, M. Maruyama, and K. Nakanishi, Tetrahedron Letters, 321 (1967).
- 5) S. Sternhell, Rev. Pure and Appl. Chem., 14, 15 (1964).